Cosmological surveys

Lecture 1

Will Percival

How did we get here?

Goal of lecture: The galaxy survey "pillar"

Galaxy surveys

Messier 33 NGC 604 SDSS angular galaxy survey

Southern Galactic Cap

Northern Galactic Cap

Spectra gives recession velocities and redshifts

Galaxy redshift survey "history"

Fractional error in the amplitude of the fluctuation spectrum

1970	x100
1990	x2
1995	±0.4
1998	±0.2
1999	±0.1
2002	±0.05
2003	±0.03
2009	±0.01
2012	±0.002

Driven by the development of instrumentation

Baryon Oscillation Spectroscopic Survey

- Duration: Fall 2009 Summer 2014
- Telescope: 2.5m Sloan
- Upgrade to SDSS-II spectrograph
 - 1000 smaller fibers
 - higher throughput
- Spectra:
 - 3600° A $< \lambda <$ 10, 000° A New spectrograph
 - $-R = \lambda/\Delta\lambda = 1300 3000$
 - (S/N) at mag. limit
 - 22 per pix. (averaged over 7000-8500Å)
 - 10 per pix. (averaged over 4000-5500Å)
- Area: 10,000 deg2
- Targets:
 - -1.5×10^{6} massive galaxies, z < 0.7, i < 19.9
 - 1.5×10⁵ quasars, z>2.2, g<22.0
 - 75,000 ancillary science targets, many categories

The Sloan Digital Sky Survey telescope

S

Lauren Anderson¹, Eric Aubourg², Stephen Bailey³, Dmitry Bizyaev⁴, Michael Blanton⁵, Adam S. Bolton⁶, J. Brinkmann⁴, Joel R. Brownstein⁶, Angela Burden⁷, Antonio J. Cuesta⁸, Luiz N. A. da Costa^{9,10}, Kyle S. Dawson⁶, Roland de Putter^{11,12}, Daniel J. Eisenstein¹³, James E. Gunn¹⁴, Hong Guo¹⁵, Jean-Christophe Hamilton², Paul Harding¹⁵, Shirley Ho^{3,14}, Klaus Honscheid¹⁶, Eyal Kazin¹⁷, D. Kirkby¹⁸, Jean-Paul Kneib¹⁹, Antione Labatie²⁰, Craig Loomis²¹, Robert H. Lupton¹⁴, Elena Malanushenko⁴, Viktor Malanushenko⁴, Rachel Mandelbaum^{14,21}, Marc Manera⁷, Claudia Maraston⁷, Cameron K. McBride¹³, Kushal T. Mehta²², Olga Mena¹¹, Francesco Montesano²³, Demetri Muna⁵, Robert C. Nichol⁷, Sebastián E. Nuza²⁴, Matthew D. Olmstead⁶, Daniel Oravetz⁴, Nikhil Padmanabhan⁸, Nathalie Palanque-Delabrouille²⁵, Kaike Pan⁴, John Parejko⁸, Isabelle Pâris²⁶, Will J. Percival⁷, Patrick Petitjean²⁶, Francisco Prada^{27,28,29}, Beth Reid^{3,30}, Natalie A. Roe³, Ashley J. Ross⁷, Nicholas P. Ross³, Lado Samushia^{7,31}, Ariel G. Sánchez²³, David J. Schlegel^{*3}, Donald P. Schneider^{32,33}, Claudia G. Scóccola^{34,35}, Hee-Jong Seo³⁶, Erin S. Sheldon³⁷, Audrey Simmons⁴, Ramin A. Skibba²², Michael A. Strauss²¹, Molly E. C. Swanson¹³, Daniel Thomas⁷, Jeremy L. Tinker⁵, Rita Tojeiro⁷, Mariana Vargas Magaña², Licia Verde³⁸, Christian Wagner¹², David A. Wake³⁹, Benjamin A. Weaver⁵, David H. Weinberg⁴⁰, Martin White^{3,41,42}, Xiaoying Xu²², Christophe Yèche²⁵, Idit Zehavi¹⁵, Gong-Bo Zhao^{7,43}

BOSS DR9 galaxies

BOSS DR10 galaxies

BOSS DR11 galaxies

BOSS DR12 galaxies

Clustering

What does "clustering" mean?

Over-density fields

"probability of seeing structure", can be recast in terms of the overdensity

$$\delta = \frac{\rho - \rho_0}{\rho_0}$$

The correlation function is simply the real-space 2-pt statistic of the field

$$\xi(r) = \langle \delta(\mathbf{x})\delta(\mathbf{x} + \mathbf{r}) \rangle$$

Its Fourier analogue, the power spectrum is defined by

 $P(k) = \langle \delta(\mathbf{k}) \delta(\mathbf{k}) \rangle$

By analogy, one should think of "throwing down" Fourier modes rather than "sticks"

Real-space correlation function

Power spectrum

Statistically complete knowledge?

Gaussian random field: knowledge of either the correlation function or power spectrum is sufficient – they are statistically complete ... but ...

The matter power spectrum

Comparison of CMB and LSS power spectra

Physics from the linear galaxy power spectrum

Projected clustering

- Galaxy clustering as a standard ruler
- BAO or full power spectrum
- Alcock-Paczynski effect

Intrinsic power spectrum shape

- Matter density
- Baryon Acoustic Oscillations
- Neutrino mass
- Inflation fluctuation spectrum
- f_{NL}

 $P_{\text{gal}}(k,\mu,a) = k^n T^2(k) D^2(a) [b(a) + f(a)\mu^2]^2$

- k = comoving wavenumber
- $\mu = \cos(\text{angle to line-of-sight})$
- a = cosmological scale factor
- b = galaxy bias factor
- D = linear growth rate
- f = dlnD/dlna

- Structure growth
- amplitude of power spectrum
- redshift-space distortions

Intrinsic clustering - Baryon Acoustic Oscillations

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

 $\Omega_{\rm m}$ h²=0.147, $\Omega_{\rm b}$ h²=0.024

position-space description: Bashinsky & Bertschinger astro-ph/0012153 & astro-ph/02022153

Measured 2-point functions

Baryon Acoustic Oscillations (BAO)

(images from Martin White)

To first approximation, BAO wavelength is determined by the comoving sound horizon at recombination

$$k_{
m bao} = 2\pi/s \ s = rac{1}{H_0\Omega_m^{1/2}} \int_0^{a_*} da rac{c_s}{(a+a_{
m eq})^{1/2}}$$

comoving sound horizon ~110h⁻¹Mpc, BAO wavelength 0.06hMpc⁻¹

Acoustic Oscillations in the matter distribution

Dodelson "modern cosmology"

descriptions describe the same physics

Reconstruction of linear BAO

Linear vs Non-linear behaviour

P(k) calculated from Smith et al. 2003, MNRAS, 341,1311 fitting formulae
non-linear BAO damping

 For BAO on non-linear scales, primary effect is damping caused by large-scale bulk motions, well described as being random

$$P_{\rm damp}(k,\sigma) = P_{\rm lin}(k)e^{\frac{-k^2\sigma^2}{2}} + P_{\rm nw}(k)\left(1 - e^{\frac{-k^2\sigma^2}{2}}\right)$$

 Redshift-Space Distortions in apparent maps cause more damping in radial than angular directions

$$\exp\left(-\frac{k^2\sigma^2}{2}\right) \longrightarrow \exp\left(-\frac{k_{\parallel}^2\sigma_{\parallel}^2}{2} - \frac{k_{\perp}^2\sigma_{\perp}^2}{2}\right)$$

Eisenstein, Seo & White 2007; arXiv:0604361

BAO damping

Eisenstein, Seo & White 2007; arXiv:0604361

Non-linear movement on BAO scales

Padmanabhan et al. 2012; arXiv:1202.0090

A simple reconstruction algorithm

"Smoothing" dominated by large-scale flows

Smooth field and move galaxies by predicted (linear) motion

Breaks coherence between large-scale and small-scale motion

Does not recover the linear field, but does reduce the non-linear smoothing

See Padmanabhan et al. (2008; arXiv: 0812.2905) for a perturbation theory derivation of this

Eisenstein et al. 2006: arXiv:0604362

Reconstruction on SDSS-III mocks

Other reconstruction methods

- Gaussianisation
 - Weinberg 1992, MNRAS, 254, 315
- Path interchange Zeldovich approximation (PIZA)
 - Croft & Gaztanaga 1997, MNRAS, 285, 793
- Incompressible fluid assumption
 - Mohayaee & Sobolevskii 2007, arXiv:0712.2561
- Improvement on "simple" scheme using optimized filters
 - Tassev & Zaldarriaga 2012, arXiv:1203.6066
- MCMC fit to observed data
 - Wang et al. 2013, arXiv:1301.1348

The improvement from reconstruction

The improvement DR9 - DR11

Galaxy clustering as a standard ruler

The evolution of the scale factor

If we observed the comoving power spectrum directly, we would not constrain evolution

However, we measure galaxy redshifts and angles and infer distances

$$d_{\rm comov}(a) = \int_{t(a)}^{t_0} \frac{c \, dt'}{a(t')} = \int_a^1 \frac{c \, da'}{a'^2 H(a')}$$

The power spectrum as a standard ruler

z=0.2

z=0.35

CREDIT: WMAP & SDSS websites

BAO as a standard ruler

Changes in cosmological model alter measured BAO scale (Δd_{comov}) by:

Radial direction $\frac{c}{H(z)}$

$$\frac{c}{H(z)}\Delta z$$

(evolution of Universe)

Angular direction

$$(1+z)D_A\Delta\theta$$

(line of sight)

If we are considering radial and angular directions using randomly orientated galaxy pairs, we constrain (to 1st order)

$$D_V = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

BAO position (in a redshift slice) therefore constrains some multiple of $\frac{r_s}{D_V}$

Anisotropic projection

Define:

$$lpha_{||} \equiv H(z)_{\rm fid}/H(z)_{
m true}; \ \ lpha_{\perp} \equiv D_{A,{
m true}}/D_{A,{
m fid}},$$

Then the BAO scale measured along a direction given by the angle α with respect to the line-of-sight depends on

$$lpha(\mu) = \sqrt{\mu^2 lpha_{||}^2 + (1-\mu^2) lpha_{\perp}^2}.$$

$$\mu = cos(\alpha)$$

Anisotropic projection

$$\alpha_F = \int_0^1 d\mu F(\mu) \left[\mu^2 \alpha_{||}^2 + (1 - \mu^2) \alpha_{\perp}^2 \right]^{\frac{1}{2}}$$

The Alcock-Paczynski Effect

- If the Universe is isotropic, clustering is same radial & tangential
- Stretching at a single redshift slice (for galaxies expanding with Universe) depends on

H⁻¹(z) (radial)

 $D_A(z)$ (angular)

- Analyze with wrong model -> see anisotropy
- AP effect measures D_A(z)H(z)
- RSD limits test to scales where can be modeled - need radial separation to be dependent on H⁻¹

Can we use the AP effect on small scales?

use isolated galaxy pairs

Marinoni & Buzzi 2011 Nature 468, 539 Jennings et al. 2012 MNRAS 420, 1079

use voids Lavaux & Wandelt 2011 arXiv:1110.0345

Both try to isolate objects where the RSD signal is known or weak

Collapsed structures

Live in static region of space-time

Velocity from growth exactly cancels Hubble expansion

Two static galaxies in same structure have same observed redshift irrespective of distance from us

Redshift difference only tells us properties of system

Two collapsed similar regions observed in different background cosmologies give same Δz

No cosmological information from Δz

Cannot be used for AP tests

Belloso et al. 2012: arXiv:1204.5761

Results

$$D_{V}(0.57) = (2055 \pm 28 \text{ Mpc}) \left(\frac{r_{d}}{r_{d, \text{fid}}}\right)$$

$$D_{V}(0.32) = (1275 \pm 36 \text{ Mpc}) \left(\frac{r_{d}}{r_{d, \text{fid}}}\right),$$

$$D_{A}(0.57) = (1386 \pm 26 \text{ Mpc}) \left(\frac{r_{d}}{r_{d, \text{fid}}}\right),$$

$$H(0.57) = (94.1 \pm 4.7 \text{ km s}^{-1} \text{ Mpc}^{-1}) \left(\frac{r_{d, \text{fid}}}{r_{d}}\right)$$

$$\int_{1}^{4} \int_{1}^{6} 6dFGS \xrightarrow{\text{BOSS}} \underset{\text{LOWZ}}{\text{CMASS}} \underset{\text{CMASS}}{\text{WiggleZ}}$$

$$\int_{0.9}^{4} \int_{0.9}^{1} \int_{0.9}^{1} \int_{0.9}^{1} \int_{0.9}^{1} \int_{0.9}^{1} \int_{0.9}^{1} \int_{0.9}^{1} \int_{0.9}^{1} \int_{0.8}^{1} \int_{0.9}^{1} \int_{0.8}^{1} \int_{0.9}^{1} \int_{0.8}^{1} \int_{0.2}^{1} \int_{0.406}^{1} \int_{0.8}^{1} \int_{0.2}^{1} \int_{0.406}^{1} \int_{0.8}^{1} \int_{0.2}^{1} \int_{0.406}^{1} \int_{0.8}^{1} \int_{0.2}^{1} \int_{0.406}^{1} \int_{0.8}^{1} \int_{0.8}^{1} \int_{0.2}^{1} \int_{0.2}^{1} \int_{0.406}^{1} \int_{0.8}^{1} \int_{0.8}^{1} \int_{0.8}^{1} \int_{0.8}^{1} \int_{0.2}^{1} \int_{0.406}^{1} \int_{0.8}^{1} \int_{0.8}^{1} \int_{0.8}^{1} \int_{0.8}^{1} \int_{0.2}^{1} \int_{0.8}^{1} \int_{0.8$$

A more direct way of measuring the matter density?

Jeans length

The transfer function depends on the composition of the matter (CDM, baryons, neutrinos, etc.)

An important scale is the Jeans Length which is the scale of fluctuation where pressure support equals gravitational collapse,

$$\lambda_J = \frac{C_s}{\sqrt{G\rho}}$$

where c_s is the sound speed of the material, and ρ is its density.

"F=ma" for perturbation growth \vdots $\delta = (gravity - pressure)\delta$ depends on Jeans scale In radiation dominated Universe, pressure support means that small perturbations cannot collapse. Jeans scale changes with time, leading to smooth turn-over of matter power spectrum. Projected cut-off dependent on matter density times the Hubble parameter Ω_mh .

The power spectrum turn-over

Amplitude of effect depends on matter density – how long before matter-radiation equality

The shape of the power spectrum

credit: VIRGO consortium

Analysis of the SDSS DR2 main galaxies

Recovered power spectrum from early sample drawn from the Sloan Digital Sky Survey.

Correction applied for the large-scale bias evolution through the survey

Analysis of the final 2dFGRS sample

Cole et al. 2005, MNRAS, 362, 505

the problem is scale-dependent bias

By subdividing 2dFGRS into red and blue galaxies, Sanchez & Cole also concluded that differences with SDSS were caused by scale-dependent galaxy bias

Sanchez & Cole 2007, arXiv:0708.1517

Galaxy bias

Galaxy bias : red galaxies

Galaxy bias: blue galaxies

Galaxy bias

Galaxy bias = relationship between galaxy and matter over-density fields

$$\frac{\Delta \rho_g}{\rho_g} = f\left(\frac{\Delta \rho_m}{\rho_m}\right)$$
"Spherical cow models"

Spherical cow is a metaphor for highly simplified scientific models of complex real life phenomena.

The phrase comes from a joke about theoretical physicists:

Milk production at a dairy farm was low, so the farmer wrote to the local university, asking for help. A multidisciplinary team of professors was assembled, headed by a theoretical physicist, and two weeks of intensive on-site investigation took place. The scholars then returned to the university, where the task of writing the report was left to the team leader. Shortly thereafter the physicist returned to the farm, saying to the farmer "I have the solution, but it only works in the case of spherical cows in a vacuum." ... at which point the farmer went back to his work.

Finding galaxies (2D example: peaks)

Plot stolen from: Donghui Jeong

Peak-background split bias model

Halo formation much easier with additional long-wavelength fluctuation

Peak-background split galaxy bias model

Sheth & Tormen 1999, arXiv:9901122

Mass function gives bias

The mass function contains information about bias!

$$\frac{\delta\rho_g}{\rho_g} = \frac{n(m,\delta_c - \delta_{dm}) - n(m,\delta_c)}{n(m,\delta_c)} = -\frac{\partial\ln n(m,\delta_c)}{\partial\delta_c}\delta_m$$

For example, the Press-Schechter mass function gives a bias

$$n(m, \delta_c) = -\frac{2\hat{\rho}}{\sqrt{2\pi}m^2} \frac{d\ln\sigma_m^2}{d\ln m} \frac{\delta_c}{\sigma_m} \exp\left[-\frac{\delta_c^2}{2\sigma_m^2}\right]$$
$$\frac{\delta\rho_g}{\rho_g} = \left(\frac{\delta_c}{\sigma_m^2} - \frac{1}{\delta_c}\right) \frac{\delta\rho_m}{\rho_m}$$

Thus bias tells you halo mass!

large-scale bias <=> halo mass

redshift

Peak-background split galaxy bias

Local bias

$$\delta_g(z,k) = b(z,k)\delta_m(z,k)$$

Scale-independent bias

$$\delta_g(z,k) = b(z)\delta_m(z,k)$$

Translates to a perfect degeneracy in the amplitude of the power spectrum or correlation function

$$P_g(z,k) = b^2(z)P_m(z,k)$$

Theoretical evidence for this model comes from the peakbackground split model

More powerful ways of quantifying "galaxy bias" exist, such as the "halo model", which links a large-scale local bias model, with a small-scale "inside halo" form

Galaxy bias observations

Zehavi et al. 2010, arXiv:1005.2413

Galaxy bias in surveys

In general, galaxy surveys do not produce homogeneous samples of galaxies

Galaxy luminosity varies systematically

Galaxy density varies systematically

To test differences caused only by galaxy properties, need to define "volume limited subcatalogs"

Goal of this lecture

How did we get here?

Supernovae tell us we live in a lambda dominated Universe

BAO tell us we live in a low matter density Universe